

XVII Congreso Internacional ALASA 2022

Dr. Andreas Lang

Climate Change Consultant at MunichRE

Impactos reales del Cambio Climático en la Industria del Seguro Agropecuario

Climate Change in Past, Present & Future

Climate Change in Latin America

"Changes in timing and magnitude of precipitation and extreme temperatures are impacting agricultural production (high confidence)."

IPCC AR6, WG2

- Robust increase in Maximum Temperature
- Change in total precipitation dependent on region, but less certain
- Increase in **extreme precipitation** (≠ mean)
- Trends in T & P drive drought frequency, intensity & duration, but T & ET as main driver in many regions

Source: IPCC AR6, WG1 (2021)

Changing Extreme Weather Events

Relevant questions

- (1) Has a certain extreme event become more likely? If so, what has made it more likely?
- (2) Will it become more likely in the future?

Challenge

Climate world & NatCat world

(-> different scales; time horizon; physics)

→ Information from both observations & climate model experiments necessary!

Event Attribution

De Abreu et al., 2019

Idea: Change in extreme value distribution of actual world (with GHG) and virtual world (only natural influences such as ENSO, solar, volc.)

- → Change in exceedance probability of certain event; but NOT prove for individual event!
- → Can identify loss drivers which would not be detectable from statistics (rarity, variability)

Challenges:

- How to define event?
- Are models suited to simulate event type?

Drought – Observed Changes

NSA

SAM

SES

Increased aridity, intense droughts and subsequent effects on agriculture are already observed for several regions in Central & South America

		Average change in the percentage of land area in drought in 2010-19 with respect to 1950-59		
	Subregion	At least 1 month in drought	At least 3 months in drought	At least 6 months in drought
	Central America (CA)	38.8%	17.6%	6.1%
	Northwest South America (NWS)	51.8%	25.3%	7.0%
	Northern South America (NSA)	52.5%	18.3%	2.5%
_	South America Monsoon (SAM)	48.0%	34.4%	12.2%
S	Northeast South America (NES)	64.5%	38.4%	12.0%
الر	Southeast SouthAmerica (SES)	16.4%	6.7%	0.4%
	Southwest South America (SWS)	20.5%	13.9%	7.5%
	Southern South America (SSA)	-23.5%	-8.8%	

IPCC AR6, WG2: Change in the percentage of land area affected by extreme drought using the Standardised Precipitation-Evapotranspiration Index (SPEI); extreme drought defined as $SPEI \le -1.6$. Data derived from *Romanello et al.* (2021).

Drought – Attribution to Climate Change

Global attribution study:

- → Anthropogenic forcing has increased ...
- drought frequency
- maximum drought duration
- maximum drought intensity
- ... in large parts of the Americas

Temperature & Evapotranspiration as main driver

(outweighs increases in mean precipitation in many regions)

Shifts in SPEI drought frequency between 1851-1900 & 1956-2005

for natural-only (no GHGs)

Shifts in **SPEI drought frequency** between 1851-1900 & 1956-2005

for **full historical** forcing (incl. GHGs)

Chiang et al. (2021): Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Comm.

Mexico Drought 2020/2021

Evaporative Stress Index Oct 2021

https://earthobservatory.nasa.gov/images/148270/widespread-drought-in-mexico

- ~20% less rainfall than normal during dry season (Oct 2020 - April 2021)
- Extreme temperatures above 35°C in many areas
- +2bn USD economic loss

Drivers:

- Rainfall deficit: La Nina (cold waters in eastern Pacific, inhibiting rain over Mexico
- Long-term Climate Change (-> hydrological drought)

Mexico Drought 2020/2021

-115 -110

-105

-100

Data: 1950-2017, from CRUv4.02

Attribution study (Williams et al., 2021): 19% of drought

severity attributable to man-made climate change

Source: Murray-Tortarolo, 2021. Atmosfera

-100

-115 -110

-105

Standard Precipitation Index for 3 and 12 months in Mato Grosso

2019-2022: Prolonged drought

- 3 years with lower-than-normal precip
- severe water deficit
- Paraná River with lowest levels in 77y
- Affected winter (corn, wheat, coffee) & summer crops (soybean)

Source: Pascale et al. (2021): Natural variability vs forced signal in the 2015–2019 Central American drought. Climatic Change

Source: Marengo et al. (2021): Extreme Drought in the Brazilian Pantanal in 2019–2020. Frontiers in Water

- Meteorological situation:
 Stationary High ("Atmospheric blocking")
 led to reduced moisture flux from Amazon
 + extreme heat wave Jan 2022
- Climatological situation:
 2 consecutive La Nina-summers
 (associated with lower mean rainfall)
- Deforestation & disruption of water cycle:
 Rainforests with higher capacity for evapotranspiration (ET)
 - → Deforestation affects local energy balance
 & reduces rainfall in adjacent regions

- Meteorological situation:
 Stationary High ("Atmospheric blocking")
 led to reduced moisture flux from Amazon
 + extreme heat wave Jan 2022
- Climatological situation:
 2 consecutive La Nina-summers
 (associated with lower mean rainfall)
- Deforestation & disruption of water cycle:
 Rainforests with higher capacity for evapotranspiration (ET)
 - → Deforestation affects local energy balance
 & reduces rainfall in adjacent regions

Sources:

Aragao et al. (2013): The rainforest's water pump. *Nature*Staal et al. (2020): Feedback between drought and deforestation in the Amazon Arie. *Env. Res. Letters*

- Meteorological situation:
 Stationary High ("Atmospheric blocking")
 led to reduced moisture flux from Amazon
 + extreme heat wave Jan 2022
- Climatological situation:
 2 consecutive La Nina-summers
 (associated with lower mean rainfall)
- Deforestation & disruption of water cycle:
 Rainforests with higher capacity for evapotranspiration (ET)
 - → Deforestation affects local energy balance
 & reduces rainfall in adjacent regions

- + Long-term climate change:
- Exacerbating droughts due to increased temperatures & evaporation rates
- Increasing likelihood of other drivers

- Meteorological situation:
 Stationary High ("Atmospheric blocking")
 led to reduced moisture flux from Amazon
 + extreme heat wave Jan 2022
- Climatological situation:
 2 consecutive La Nina-summers
 (associated with lower mean rainfall)
- Deforestation & disruption of water cycle:
 Rainforests with higher capacity for evapotranspiration (ET)
 - → Deforestation affects local energy balance
 & reduces rainfall in adjacent regions

Drought – Future Projections

Differences in **drought frequency** (events/decade) in terms **SPEI** between 2071–2100 and 1981–2010 under RCP4.5

Source: Spinoni et al. (2020); based on large ensemble of RCMs

- ➤ Increased drought risk (frequency, intensity and length) for many regions of the world
- Most affected: Subtropics (here both ET & P driving)
- Hadley cell expansion works to expand dry subtropics poleward
- ➤ Temperature & Evapotranspiration as main driver in many regions (often outweighs increases in mean precipitation)

Wildfire season 2016/2017 in Chile

- Chile's worst wildfires on record
- Affected an area of > 5000 km²
- Loss of forest plantations, olive orchards, vineyards, ...

Location, date & rank (2002-2017) of the 2017 fires

Trends in area burned & number of ignitions for Central Chile.

Source: Bowman et al., 2019

Wildfire season 2016/2017 in Chile

Fire Weather Index for Dec 2016–Feb 2017 over central Chile. Black line: daily average (1981–2010)

Source: Bowman et al., 2019

Meteorological drivers:

- extended period of extreme heat in Dec (up to 45°C, all-time temperature record)
- Elevated Wind speeds (-> spread)
 → enhanced Fire Weather Index (FWI)

Non-climatic drivers:

- Land cover modification
 (<20% of native vegetation remaining)
- Extensive plantations of highly flammable species (e.g., Eucalyptus)

Wildfire season 2016/2017 in Chile

Climatological drivers:

- Long-term drying tendency over most of central Chile, esp. since 2010
- Rainfall decline both due to
 - climate change
 - natural variability
 Pacific Decadal Oscillation
 - -> southward position of storm tracks
- Fire Weather Index has been shown to have increased globally due to CC

Conclusions

- Singular events largely driven by weather & natural variability, but likelihoods have already been affected by changes in the background climate due to global warming
- Specifically, climate change has already led to more frequent & extended periods of drought, enhanced wildfire weather and increased frequency of heavy precipitation
- In the future, these trends are expected to continue.
 Additional drivers: land use change, deforestation, ENSO changes (uncertain)
- ➤ Slow climate system:
 Some impacts in near-term unavoidable (→ relevance of adaptation); but emission pathways govern risks for mid/long-term (→ relevance of near-term mitigation)

iGracias!

